
Dependence: Theory and Practice

Allen and Kennedy, Chapter 2llen and Kennedy, hapter

Optimizing Compilers for Modern Architectures

Dependence: Theory and Practice
What shall we cover in this chapter?
• Introduction to Dependences
• Loop-carried and Loop-independent Dependences
• Simple Dependence Testing

P ll li ti d V t i ti• Parallelization and Vectorization

Optimizing Compilers for Modern Architectures

The Big Picture
What are our goals?
• Simple Goal: Make execution time as small as possible

Which leads to:
A hi ti f (ll i th b t) i t ti i • Achieve execution of many (all, in the best case) instructions in
parallel

• Find independent instructions

Optimizing Compilers for Modern Architectures

Dependences

• We will concentrate on data dependences
• Chapter 7 deals with control dependences• Chapter 7 deals with control dependences

• Simple example of data dependence:p p p
S1 PI = 3.14

S2 R = 5.0

S3 AREA = PI * R ** 2

• Statement S3 cannot be moved before either S1 or S2Statement S3 cannot be moved before either S1 or S2
without compromising correct results

Optimizing Compilers for Modern Architectures

Dependences
• Formally:

There is a data dependence from statement S1 to statement S2 (S2
depends on S1) if: depends on S1) if:

1. Both statements access the same memory location and at least
one of them stores onto it, and

2. There is a feasible run-time execution path from S1 to S2p 1 2

Optimizing Compilers for Modern Architectures

Load Store Classification
• Quick review of dependences classified in terms of load-store

order:
1 True dependences (RAW hazard) 1. True dependences (RAW hazard)

– S2 depends on S1 is denoted by S1 δ S2

2 Antidependence (WAR hazard)2. Antidependence (WAR hazard)
– S2 depends on S1 is denoted by S1 δ-1 S2

3 Output dependence (WAW hazard)3. Output dependence (WAW hazard)
– S2 depends on S1 is denoted by S1 δ0 S2

Optimizing Compilers for Modern Architectures

Dependence in Loops
• Let us look at two different loops:

DO I = 1, N
S A(I+1) A(I) + B(I)

DO I = 1, N
S A(I+2) A(I) + B(I)S1 A(I+1) = A(I) + B(I)

ENDDO

S1 A(I+2) = A(I) + B(I)
ENDDO

• In both cases, statement S1 depends on itself

• However, there is a significant difference

• We need a formalism to describe and distinguish such
dependences

Optimizing Compilers for Modern Architectures

Iteration Numbers
• The iteration number of a loop is equal to the value of the loop

index

• Definition:
—For an arbitrary loop in which the loop index I runs from L to U in For an arbitrary loop in which the loop index I runs from L to U in

steps of S, the iteration number i of a specific iteration is equal to
the index value I on that iteration

Example:
DO I = 0, 10, 2

S <some statement>S1 <some statement>
ENDDO

Optimizing Compilers for Modern Architectures

Iteration Vectors

What do we do for nested loops?
• Need to consider the nesting level of a loopNeed to cons der the nest ng level of a loop
• Nesting level of a loop is equal to one more than the number of

loops that enclose it.
• Gi t f l th it ti t i f ti l • Given a nest of n loops, the iteration vector i of a particular

iteration of the innermost loop is a vector of integers that
contains the iteration numbers for each of the loops in order of
nesting level.g .

• Thus, the iteration vector is: {i1, i2, ..., in }
where ik, 1 ≤ k ≤ m represents the iteration number for the
loop at nesting level kp g

Optimizing Compilers for Modern Architectures

Iteration Vectors
Example:

DO I = 1, 2
DO J = 1 2DO J = 1, 2

S1 <some statement>
ENDDO

ENDDOENDDO

• The iteration vector S1[(2, 1)] denotes the instance of S11[()] 1
executed during the 2nd iteration of the I loop and the 1st
iteration of the J loop

Optimizing Compilers for Modern Architectures

Ordering of Iteration Vectors
• Iteration Space: The set of all possible iteration vectors for a

statement

Example:
DO I = 1, 2

DO J = 1, 2
S1 <some statement>

ENDDO
ENDDO

• The iteration space for S is { (1 1) (1 2) (2 1) (2 2) }The iteration space for S1 is { (1,1), (1,2), (2,1), (2,2) }

Optimizing Compilers for Modern Architectures

Ordering of Iteration Vectors
• Useful to define an ordering for iteration vectors

• Define an intuitive, lexicographic order

It ti i d it ti j d t d i j iff• Iteration i precedes iteration j, denoted i < j, iff:
1. i[1:n-1] < j[1:n-1], or
2 i[1:n-1] = j[1:n-1] and i < j2. i[1:n 1] = j[1:n 1] and in < jn

Optimizing Compilers for Modern Architectures

Formal Definition of Loop Dependence
• Theorem 2.1 Loop Dependence:

There exists a dependence from statements S1 to statement S2
in a common nest of loops if and only if there exist two mm f p f y f
iteration vectors i and j for the nest, such that
(1) i < j or i = j and there is a path from S1 to S2 in the body
of the loop,
(2) statement S accesses memory location M on iteration i and (2) statement S1 accesses memory location M on iteration i and
statement S2 accesses location M on iteration j, and
(3) one of these accesses is a write.

• Follows from the definition of dependence

Optimizing Compilers for Modern Architectures

Transformations
• We call a transformation safe if the transformed program has

the same "meaning" as the original program

• But, what is the "meaning" of a program?

For our purposes:
• Two computations are equivalent if, on the same inputs:

—They produce the same outputs in the same order

Optimizing Compilers for Modern Architectures

Reordering Transformations
• A reordering transformation is any program transformation that

merely changes the order of execution of the code, without
adding or deleting any executions of any statementsg g y f y m

Optimizing Compilers for Modern Architectures

Properties of Reordering
Transformations

• A reordering transformation does not eliminate dependences
• However, it can change the ordering of the dependence which

ill l d t i t b h iwill lead to incorrect behavior
• A reordering transformation preserves a dependence if it

preserves the relative execution order of the source and sink of
th t d dthat dependence.

Optimizing Compilers for Modern Architectures

Fundamental Theorem of Dependence
• Fundamental Theorem of Dependence:

—Any reordering transformation that preserves every dependence in a
program preserves the meaning of that programprogram preserves the meaning of that program

• Proof by contradiction. Theorem 2.2 in the book.

Optimizing Compilers for Modern Architectures

Fundamental Theorem of Dependence
• A transformation is said to be valid for the program to which it

applies if it preserves all dependences in the program.

Optimizing Compilers for Modern Architectures

Distance and Direction Vectors
• Consider a dependence in a loop nest of n loops

—Statement S1 on iteration i is the source of the dependence
Statement S on iteration j is the sink of the dependence—Statement S2 on iteration j is the sink of the dependence

• The distance vector is a vector of length n d(i,j) such that: g (,j)
d(i,j)k = jk - ik

• We shall normalize distance vectors for loops in which the index • We shall normalize distance vectors for loops in which the index
step size is not equal to 1.

Optimizing Compilers for Modern Architectures

Direction Vectors
• Definition 2.10 in the book:

Suppose that there is a dependence from statement S1 on Suppose that there is a dependence from statement S1 on
iteration i of a loop nest of n loops and statement S2 on
iteration j, then the dependence direction vector is D(i,j) is
defined as a vector of length n such thatg

“<” if d(i,j)k > 0
D(i j)k = “=” if d(i j)k = 0D(i,j)k = = if d(i,j)k = 0

“>” if d(i,j)k < 0

Optimizing Compilers for Modern Architectures

Direction Vectors
Example:

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

• S1 has a true dependence on itself.
• Distance Vector: (1, 0, -1)
• Direction Vector: (<, =, >)

Optimizing Compilers for Modern Architectures

Direction Vectors

• A dependence cannot exist if it has a direction vector
whose leftmost non "=" component is not "<" as this would p
imply that the sink of the dependence occurs before the
source.

Optimizing Compilers for Modern Architectures

Direction Vector Transformation
• Theorem 2.3. Direction Vector Transformation. Let T be a

transformation that is applied to a loop nest and that does not
rearrange the statements in the body of the loop. Then the g m y f p.
transformation is valid if, after it is applied, none of the
direction vectors for dependences with source and sink in the
nest has a leftmost non- “=” component that is “>”.

• Follows from Fundamental Theorem of Dependence:
—All dependences existAll dependences exist
—None of the dependences have been reversed

Optimizing Compilers for Modern Architectures

Loop-carried and Loop-independent
Dependences

• If in a loop statement S2 depends on S1, then there are two
possible ways of this dependence occurring:

1. S1 and S2 execute on different iterations
—This is called a loop-carried dependenceThis is called a loop carried dependence.

2. S1 and S2 execute on the same iteration
—This is called a loop-independent dependence.

Optimizing Compilers for Modern Architectures

Loop-carried dependence
• Definition 2.11
• Statement S2 has a loop-carried dependence on statement S1 if

d l if S f l i M i i i Sand only if S1 references location M on iteration i, S2
references M on iteration j and d(i,j) > 0 (that is, D(i,j)
contains a “<” as leftmost non “=” component).

Example:
DO I = 1, N
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
ENDDO

Optimizing Compilers for Modern Architectures

Loop-carried dependence
• Level of a loop-carried dependence is the index of the

leftmost non-“=” of D(i,j) for the dependence.
For instance:For instance:

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10DO K 1, 10
S1 A(I, J, K+1) = A(I, J, K)

ENDDO
ENDDOENDDO

ENDDO

• Direction vector for S1 is (=, =, <)
• Level of the dependence is 3
• A level-k dependence between S1 and S2 is denoted by

S1 δk S2

Optimizing Compilers for Modern Architectures

1 k 2

Loop-carried Transformations
• Theorem 2.4 Any reordering transformation that does not

alter the relative order of any loops in the nest and
preserves the iteration order of the level-k loop p f p
preserves all level-k dependences.

• Proof:
—D(i j) has a “<” in the kth position and “=” in positions 1 D(i, j) has a < in the k position and = in positions 1

through k-1
⇒ Source and sink of dependence are in the same iteration of

loops 1 through k-1
⇒ Cannot change the sense of the dependence by a reordering

of iterations of those loops

• As a result of the theorem, powerful transformations can
be applied

Optimizing Compilers for Modern Architectures

Loop-carried Transformations
Example:

DO I = 1, 10
S A(I+1) = F(I)S1 A(I+1) = F(I)
S2 F(I+1) = A(I)

ENDDO

can be transformed to:

DO I = 1, 10
S1 F(I+1) = A(I)
S2 A(I+1) = F(I)

ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences
• Definition 2.14. Statement S2 has a loop-independent

dependence on statement S1 if and only if there exist two
iteration vectors i and j such that:iteration vectors i and j such that:
1) Statement S1 refers to memory location M on iteration i, S2 refers

to M on iteration j, and i = j.
2) There is a control flow path from S1 to S2 within the iteration2) There is a control flow path from S1 to S2 within the iteration.

Example:
DO I = 1, 10
S1 A(I) = ...
S2 ... = A(I)
ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences
More complicated example:

DO I = 1, 9
S A(I) =S1 A(I) = ...
S2 ... = A(10-I)
ENDDO

• No common loop is necessary. For instance:
DO I = 1, 10
S1 A(I) = ...
ENDDO
DO I = 1, 10
S2 ... = A(20-I)
ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences
• Theorem 2.5. If there is a loop-independent dependence from

S1 to S2, any reordering transformation that does not move
statement instances between iterations and preserves the m p
relative order of S1 and S2 in the loop body preserves that
dependence.

• S2 depends on S1 with a loop independent dependence is denoted
b S δ Sby S1 δ∞ S2

• Note that the direction vector will have entries that are all “=”
for loop independent dependences

Optimizing Compilers for Modern Architectures

Simple Dependence Testing
• Theorem 2.7: Let a and b be iteration vectors within

the iteration space of the following loop nest:

DO i1 = L1, U1, S1
DO i L U SDO i2 = L2, U2, S2
...

DO in = Ln, Un, Sn
S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...

S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO

...

ENDDO

Optimizing Compilers for Modern Architectures

ENDDO

Simple Dependence Testing
DO i1 = L1, U1, S1

DO i2 = L2, U2, S2
...

DO i = L U SDO in = Ln, Un, Sn
S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...

S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO

...

ENDDO

ENDDO

A d d i f S S if d l if h • A dependence exists from S1 to S2 if and only if there
exist values of α and β such that (1) α is
lexicographically less than or equal to β and (2) the
following system of dependence equations is satisfied:following system of dependence equations is satisfied:

fi(α) = gi(β) for all i, 1 ≤ i ≤ m

• Direct application of Loop Dependence Theorem

Optimizing Compilers for Modern Architectures

Direct application of Loop Dependence Theorem

Simple Dependence Testing: Delta
Notation

• Notation represents index values at the source and sink
Example:

DO I = 1 NDO I = 1, N
S A(I + 1) = A(I) + B
ENDDO

I i d d b I• Iteration at source denoted by: I0

• Iteration at sink denoted by: I0 + ΔI
• Forming an equality gets us: I0 + 1 = I0 + ΔIForming an equality gets us: I0 + 1 = I0 + ΔI
• Solving this gives us: ΔI = 1

⇒ Carried dependence with distance vector (1) and direction
vector (<)vector (<)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

Example:
DO I = 1, 100

DO J = 1 100DO J = 1, 100

DO K = 1, 100

A(I+1,J,K) = A(I,J,K+1) + B

ENDDO

ENDDO

ENDDO

• I0 + 1 = I0 + ΔI; J0 = J0 + ΔJ; K0 = K0 + ΔK + 1
• Solutions: ΔI = 1; ΔJ = 0; ΔK = -1

C di di i ()• Corresponding direction vector: (<, =, >)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

• If a loop index does not appear, its distance is unconstrained
and its direction is “*”
Example:Example:

DO I = 1, 100

DO J = 1, 100

A(I+1) = A(I) + B(J)

ENDDO

ENDDO

• The direction vector for the dependence is (<, *)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

• * denotes union of all 3 directions

Example:
DO J = 1, 100

DO I = 1, 100

A(I+1) = A(I) + B(J)

ENDDO

ENDDO

• (*, <) denotes { (<, <), (=, <), (>, <) }
• Note: (>, <) denotes a level 1 antidependence with direction

vector (<, >)

Optimizing Compilers for Modern Architectures

Parallelization and Vectorization
• Theorem 2.8. It is valid to convert a sequential loop to a

parallel loop if the loop carries no dependence.

• Want to convert loops like:
DO I=1,N

X(I) = X(I) + C() () C

ENDDO

• to X(1:N) = X(1:N) + C (Fortran 77 to Fortran 90)

• However:
DO I=1,N

X(I+1) X(I) + CX(I+1) = X(I) + C

ENDDO

is not equivalent to X(2:N+1) = X(1:N) + C

Optimizing Compilers for Modern Architectures

Loop Distribution
• Can statements in loops which carry dependences be

vectorized?
D0 I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

ENDDO

D d b t d t• Dependence: S1 δ1 S2 can be converted to:

S A(2:N+1) = B(1:N) + CS1 A(2:N+1) = B(1:N) + C

S2 D(1:N) = A(1:N) + E

Optimizing Compilers for Modern Architectures

Loop Distribution
DO I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

ENDDO

• transformed to:• transformed to:
DO I = 1, N

S1 A(I+1) = B(I) + C
ENDDOENDDO
DO I = 1, N

S2 D(I) = A(I) + E
ENDDO

• leads to:
S1 A(2:N+1) = B(1:N) + C

(1) (1)

Optimizing Compilers for Modern Architectures

S2 D(1:N) = A(1:N) + E

Loop Distribution
• Loop distribution fails if there is a cycle of

dependences
DO I = 1, N

S1 A(I+1) = B(I) + C

S2 B(I+1) = A(I) + E

ENDDO

S1 δ1 S2 and S2 δ1 S1

• What about:
DO I = 1, N

S1 B(I) = A(I) + E

S2 A(I+1) = B(I) + C

ENDDO

Optimizing Compilers for Modern Architectures

