Dependence: Theory and Practice

Allen and Kennedy, Chapter 2

Optimizing Compilers for Modern Architectures

Dependence: Theory and Practice

What shall we cover in this chapter?
* Introduction to Dependences

Loop-carried and Loop-independent Dependences
* Simple Dependence Testing

Parallelization and Vectorization

Optimizing Compilers for Modern Architectures

The Big Picture

What are our goals?
* Simple Goal: Make execution time as small as possible

Which leads to:

* Achieve execution of many (all, in the best case) instructions in
parallel

* Find independent instructions

Optimizing Compilers for Modern Architectures

Dependences

* We will concentrate on data dependences
* Chapter 7 deals with control dependences

* Simple example of data dependence:
S, Pl =3.14
S, R=5.0
S; AREA = PI * R ** 2

* Statement S; cannot be moved before either S; or S,
without compromising correct results

Optimizing Compilers for Modern Architectures

Dependences

* Formally:

There is a data dependence from statement S; to statement S, (S,
depends on S,) if:

1. Both statements access the same memory location and at least
one of them stores onto it, and

2. There is a feasible run-time execution path from S; to S,

Optimizing Compilers for Modern Architectures

Load Store Classification

* Quick review of dependences classified in terms of load-store
order:

1. True dependences (RAW hazard)
- S, depends on S, is denoted by S, 5 S,

2. Antidependence (WAR hazard)
- S, depends on S, is denoted by S, 61 S,

3. Output dependence (WAW hazard)
- S, depends on S, is denoted by S; §° S,

Optimizing Compilers for Modern Architectures

Dependence in Loops

* Let us look at two different loops:

Sy

DO 1 =1, N
ACI+1) = A(1) + B(I)
ENDDO

Sy

DO I = 1, N

ACI1+2) = A(1) + B(I)
ENDDO

* In both cases, statement S; depends on itself

 However, there is a significant difference

- We need a formalism to describe and distinguish such
dependences

Optimizing Compilers for Modern Architectures

lteration Numbers

* The iteration number of a loop is equal to the value of the loop
index

* Definition:
—For an arbitrary loop in which the loop index I runs from L to U in

steps of S, the iteration number 7 of a specific iteration is equal to
the index value I on that iteration

Example:
DO 1 = 0, 10, 2
S, <some statement>
ENDDO

Optimizing Compilers for Modern Architectures

lteration Vectors

What do we do for nested loops?
* Need to consider the nesting level of a loop

* Nesting level of a loop is equal to one more than the number of
loops that enclose it.

* Given a nest of n loops, the iteration vector 7 of a particular
iteration of the innermost loop is a vector of integers that
contains the iteration numbers for each of the loops in order of
nesting level.

* Thus, the iteration vector is: {i;, i,, ..., i, }
where i, 1 < k < m represents the iteration number for the
loop at nesting level k

Optimizing Compilers for Modern Architectures

lteration Vectors

Example:
DO 1 =1, 2
DO J =1, 2
S, <some statement>
ENDDO
ENDDO

* The iteration vector S;[(2, 1)] denotes the instance of S,
executed during the 2nd iteration of the I loop and the 1st
iteration of the J loop

Optimizing Compilers for Modern Architectures

Ordering of Iteration Vectors

* Iteration Space: The set of all possible iteration vectors for a

statement
Example:
DO 1 =1, 2
DO J =1, 2
S, <some statement>
ENDDO
ENDDO

* The iteration space for S; is { (1,1), (1,2), (2,1), (2.2) }

Optimizing Compilers for Modern Architectures

Ordering of Iteration Vectors

* Useful to define an ordering for iteration vectors
* Define an intuitive, lexicographic order
* Iteration i precedes iteration j, denoted i < j, iff:

1.i[1:n-1] < j[1:n-1], or
2. i[1:n-1] = j[1:n-1] and i, < j,

Optimizing Compilers for Modern Architectures

Formal Definition of Loop Dependence

* Theorem 2.1 Loop Dependence:
There exists a dependence from statements S; to statement S,
in a common nest of loops if and only if there exist two
iteration vectors / and j for the nest, such that
(1) 7 < jor /= jand there is a path from S; to S, in the body
of the loop,
(2) statement S; accesses memory location M on iteration / and
statement S, accesses location M on iteration j, and

(3) one of these accesses is a write.

* Follows from the definition of dependence

Optimizing Compilers for Modern Architectures

Transformations

* We call a transformation safe if the transformed program has
the same "meaning" as the original program

* But, what is the "meaning" of a program?

For our purposes:

* Two computations are equivalent if, on the same inputs:
— They produce the same outputs in the same order

Optimizing Compilers for Modern Architectures

Reordering Transformations

* A reordering transformation is any program transformation that
merely changes the order of execution of the code, without
adding or deleting any executions of any statements

Optimizing Compilers for Modern Architectures

Properties of Reordering
Transformations

* A reordering transformation does not eliminate dependences

* However, it can change the ordering of the dependence which
will lead to incorrect behavior

* A reordering transformation preserves a dependence if it
preserves the relative execution order of the source and sink of
that dependence.

__]
Optimizing Compilers for Modern Architectures

Fundamental Theorem of Dependence

* Fundamental Theorem of Dependence:

— Any reordering transformation that preserves every dependence in a
program preserves the meaning of that program

* Proof by contradiction. Theorem 2.2 in the book.

Optimizing Compilers for Modern Architectures

Fundamental Theorem of Dependence

* A transformation is said to be valid for the program to which it
applies if it preserves all dependences in the program.

Optimizing Compilers for Modern Architectures

Distance and Direction Vectors

* Consider a dependence in a loop nest of n loops
—Statement S, on iteration i is the source of the dependence
—Statement S, on iteration j is the sink of the dependence

* The distance vector is a vector of length n d(i,j) such that:
d(i.j = Jk - i

* We shall normalize distance vectors for loops in which the index
step size is not equal to 1.

Optimizing Compilers for Modern Architectures

Direction Vectors

* Definition 2.10 in the book:

Suppose that there is a dependence from statement S; on
iteration 7/ of a loop nest of 7 loops and statement S, on
iteration j, then the dependence direction vector is (/) is
defined as a vector of length 7 such that

“<" if o/, >0
D= "="if dif)y=0
“>" if o/, <O

__]
Optimizing Compilers for Modern Architectures

Direction Vectors

Example:
DO I =1, N
DO J =1, M
DO K =1, L
S, AC(I+1, J, K-1) = A(l, J, K) + 10
ENDDO
ENDDO
ENDDO

* S; has a true dependence on itself.
* Distance Vector: (1, O, -1)

* Direction Vector: (<, =, >)

Optimizing Compilers for Modern Architectures

Direction Vectors

* A dependence cannot exist if it has a direction vector

whose leftmost non "=" component is not "<" as this would
imply that the sink of the dependence occurs before the
source.

__]
Optimizing Compilers for Modern Architectures

Direction Vector Transformation

* Theorem 2.3. Direction Vector Transformation. Let T be a
transformation that is applied to a loop nest and that does not
rearrange the statements in the body of the loop. Then the
transformation is valid if, after it is applied, none of the
direction vectors for dependences with source and sink in the

" ” W _n
-

nest has a leftmost non- “=" component that is “>".

* Follows from Fundamental Theorem of Dependence:
— All dependences exist
—None of the dependences have been reversed

Optimizing Compilers for Modern Architectures

Loop-carried and Loop-independent
Dependences

* If in a loop statement S, depends on S;, then there are two
possible ways of this dependence occurring:

1. S; and S, execute on different iterations
—This is called a loop-carried dependence.

2. S; and S, execute on the same iteration
—This is called a loop-independent dependence.

Optimizing Compilers for Modern Architectures

Loop-carried dependence

* Definition 2.11

* Statement S, has a /loop-carried dependence on statement S, if
and only if S; references location M on iteration /, S,
references M on iteration j and o/,) > O (that is, O(/,))

contains a "<" as leftmost non "=" component).
Example:

DO I =1, N

S, AC1+1) = F(1)

S, F(1+1) = A(D)

ENDDO

Optimizing Compilers for Modern Architectures

Loop-carried dependence

* Level of a loop-carried dependence is the index of the
leftmost non-"=" of D(i,j) for the dependence.

For instance:
DO I =1, 10
DO J =1, 10
DO K =1, 10
S1 ACl, J, K+1) = A(l, J, K)
ENDDO
ENDDO
ENDDO

* Direction vector for Sl is (=, =, <)
* Level of the dependence is 3

* A level-k dependence between S; and S, is denoted by
S1 % 32

Optimizing Compilers for Modern Architectures

Loop-carried Transformations

* Theorem 2.4 Any reordering transformation that does not
alter the relative order of any loops in the nest and
preserves the iteration order of the level- 4 loop
preserves all level- k& dependences.

* Proof:

—D(i, §) has a "<” in the k™ position and "=" in positions 1
through k-1

= Source and sink of dependence are in the same iteration of
loops 1 through k-1

= Cannot change the sense of the dependence by a reordering
of iterations of those loops

As a result of the theorem, powerful transformations can
be applied

Optimizing Compilers for Modern Architectures

Loop-carried Transformations

Example:
DO I =1, 10
S, A(1+1) = F(D)
S, F(I+1) = A(lD)
ENDDO

can be transformed to:

DO 1 =1, 10

S, F(1+1) = A(D)

S, A(1+1) = F(1)
ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences

* Definition 2.14. Statement S, has a /oop-independent
dependence on statement S, if and only if there exist two
iteration vectors / and jsuch that:

1) Statement S, refers to memory location M on iteration /, S, refers
to M on iteration j, and /- /.

2) There is a control flow path from S; to S, within the iteration.

Example:
DO 1 =1, 10
S, ACD) =
S, .. = A(D
ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences

More complicated example:

DO1 =1, 9
S, ACD) = ...

S, ... = AQ0-1)
ENDDO

* No common loop is necessary. For instance:

DO 1 =1, 10
S, ACD) = ...
ENDDO

DO 1 =1, 10

S, ... = AC20-1)
ENDDO

Optimizing Compilers for Modern Architectures

Loop-independent dependences

* Theorem 2.5. If there is a loop-independent dependence from
S, to S,, any reordering transformation that does not move
statement instances between iterations and preserves the
relative order of S; and S, in the loop body preserves that
dependence.

* S, depends on S; with a loop independent dependence is denoted
by S; 3, S,

* Note that the direction vector will have entries that are all "=
for loop independent dependences

Optimizing Compilers for Modern Architectures

Simple Dependence Testing

* Theorem 2.7: Let a and b be iteration vectors within
the iteration space of the following loop nest:

DO i, = L, Uy, S,
DO i, = L,, U,, S,

n — Ln ? Un ? Sn
Sy ACF (I, ..., 1),---, LI CE 1)) =
S, = A(g, (14, ---, 1),---, (g, ---, 1))
ENDDO
ENDDO

ENDDO

Optimizing Compilers for Modern Architectures

Simple Dependence Testing

DO i, = L,, U,, S,

DO i, =1L,, U

n» Sn
S1 AP (g, .-, .-, F(iy, .., 1)) =
SZ - - = A(gl(il """ in) ----- gm(ll """ In))
ENDDO
ENDDO

ENDDO

* A dependence exists from S; to S, if and only if there
exist values of o and B such that (1) a is
lexicographically less than or equal to B and (2) the
following system of dependence equations is satisfied:

f(a) = gB) forall , 1 <i<m

* Direct application of Loop Dependence Theorem

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

* Notation represents index values at the source and sink

Example:
DO 1 =1, N

S A(l +1) = A(l) + B
ENDDO

* TIteration at source denoted by: I,
* TIteration at sink denoted by: I, + AT
* Forming an equality gets us: I;+ 1 = I, + AL

* Solving this gives us: AIL = 1

= Carried dependence with distance vector (1) and direction
vector (<)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

Example:
DO I =1, 100
DO J = 1, 100
DO K = 1, 100
A(1+1,3,K) = A(1,J,K+1) + B

ENDDO
ENDDO
ENDDO
.IO+1=IO+AI; Jono"'A\T: K0=K0+AK"‘1

* Solutions: AL = 1; AJ = 0; AK = -1

* Corresponding direction vector: (<, =, >)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

If a loop index does not appear, its distance is unconstrained
and its direction is "*”

Example:
DO 1 =1, 100
DO J = 1, 100
A(1+1) = A(l) + B(J)
ENDDO
ENDDO

* The direction vector for the dependence is (<, *)

Optimizing Compilers for Modern Architectures

Simple Dependence Testing: Delta
Notation

* * denotes union of all 3 directions

Example:
PO J = 1, 100
DO I = 1, 100
A(1+1) = A(1) + BQ)
ENDDO
ENDDO

* (%, <) denotes { (<, <), (=, <), (>, <)}

* Note: (>, <) denotes a level 1 antidependence with direction
vector (<, >)

Optimizing Compilers for Modern Architectures

Parallelization and Vectorization

* Theorem 2.8. It is valid to convert a sequential loop to a
parallel loop if the loop carries no dependence.

* Want to convert loops like:

DO 1=1,N
X(H) = X(1) + C
ENDDO
* fo X(1:N) = X(1:N) + C (Fortran 77 to Fortran 90)
* However:
DO 1=1,N
X(1+1) = X(1) + C
ENDDO

is not equivalent to X(2:N+1) = X(1:N) + C

Optimizing Compilers for Modern Architectures

Loop Distribution

* Can statements in loops which carry dependences be
vectorized?

DO I =1, N
S, AC1+1) = B(I) + C
S, D(I) = A(1) + E
ENDDO

* Dependence: S, §; S, can be converted to:

S, A(2:N+1) = B(1:N) + C
S, D(1:N) = A(L:N) + E

Optimizing Compilers for Modern Architectures

Loop Distribution

DO I =1, N

S, A(1+1) = B(Il) + C

S, D(I) = A(l) + E
ENDDO

°* transformed to:

50 0 = 4 [

S, AQED —B@)lne
ENDDO
N[= d. N

S, D(I) = A(1) + E
ENDDO

* |eads to:
S, A(2:N+1) = B(1:N) + C
S, D(1:N) = A(1:N) + E

Optimizing Compilers for Modern Architectures

Loop Distribution

* Loop distribution fails if there is a cycle of

dependences
DO I =1, N
S, A(1+1) = B(1) + C
S, B(1+1) = A(I) + E
ENDDO

* What about:

DO I =1, N

S, B(1) = A(l) + E

S, A(1+1) = B(1) + C
ENDDO

Optimizing Compilers for Modern Architectures

